
Benchmarks on BG/L:
Parallel and Serial

John A. Gunnels
Mathematical Sciences Dept.

IBM T. J. Watson Research Center



Overview

 Single node experience
 Architectural impact
 Algorithms

 Linpack
 Dealing with a bottleneck
 Communication operations



Compute Node: BG/L

 Dual FPU/SIMD
 Alignment issues

 Three-level cache
 Pre-fetching

 Dual Core
 Non-coherent L1 caches

 32 KB, 64-way, Round-Robin
 L2 & L3 caches coherent



Programming Options
High → Low Level

 Compiler optimization to find SIMD parallelism
 User input for specifying memory alignment and lack of aliasing

 alignx assertion
 disjoint pragma

 Dual FPU intrinsics (“built-ins”)
 Complex data type used to model pair of double-precision numbers

that occupy a (P, S) register pair
 Compiler responsible for register allocation and scheduling

 In-line assembly
 User responsible for instruction selection, register allocation, and

scheduling



Memory Bandwidth Utilization for L3-optimal DGEMV kernel

0

1

2

3

4

5

6

7

8

9

10

0 50000 100000 150000 200000 250000 300000 350000 400000

Size (bytes)

m
e

m
. 

b
a

n
d

w
id

th
 (

b
y

te
s

/c
y

c
le

)

L3-optimal kernel
(1st running)

L1-optimal kernel
with intrinsics(1st
running)

L1 and L3-optimal DGEMV Bandwidth
Utilization

5.3 bytes/cycle
(L3 – bandwidth)

Two different kernels are
needed to deal with data
when:

-Data come out of L1

-Data come out of L3



Matrix Multiplication
Tiling for Registers (Analysis)

 Latency tolerance (not bandwidth)
 Take advantage of register count

 Unroll by factor of two
 24 register pairs
 32 cycles per unrolled iteration
 15 cycle load-to-use latency (L2 hit)

 Could go to 3-way unroll if needed
 32 register pairs
 32 cycles per unrolled iteration
 31 cycle load-to-use latency

F2

F1

M1

M2

8

8

16

16



Recursive Data Format

 Mapping 2-D (Matrix) to
1-D (RAM)
 C/Fortran do not map well

 Space-Filling Curve
Approximation
 Recursive Tiling

 Enables
 Streaming/pre-fetching
 Dual core “scaling”

Register
Set

Blocks

L1
Cache
Blocks

L3
Cache
Blocks

Dual Register
Blocks



Dual Core

 Why?
 It’s a effortless way to double your

performance



Dual Core

 Why?
 It exploits the architecture and may

allow one to double the performance of
their code in some cases/regions



Single-Node DGEMM
Performance at 92% of Peak

Single-node DGEMM (444 MHz)

18 July 2003

0

1

2

3

4

0 50 100 150 200 250

Matrix size (N)

P
e

rf
o

rm
a

n
c

e
 (

G
F

lo
p

/s
)

Single core (GF/s)

Dual core (GF/s)

Single core peak (GF/s)

Dual core peak (GF/s)

 Near-perfect scalability (1.99×) going from single-core to
dual-core

 Dual-core code delivers 92.27% of peak flops (8 flop/pclk)
 Performance (as fraction of peak) competitive with that of

Power3 and Power4

92.27
%



Points to consider

 Code fusion can enable one to
 Perform a data re-format and/or make effective

use of both cores for an operation

 The architecture is very rich
 Corner cases have to be handled
 Can be very powerful
 Helpful in understanding performance
 Semi-esoteric improvements exist

 Fine-grained L1 data cache control



What More Could We Want?

 Open up the cache architecture more
 It would be good if the library writer could specify that a

particular access would be a miss in L1, or a hit in L3, for
example

 Expose more microarchitectural constraints to the compiler
 Example: maximum number of L1 cache misses before stall

 Better register scheduling algorithms
 Currently, we have observed excessive spills when using

close to all 32 registers



The Linpack Benchmark



LU Factorization: Brief Review

Already
factored

Pivot and scale
columns

DTRSM

DGEMM

Current block



LINPACK
Problem Mapping

...
16n
repetitions n repetitions

N



Panel Factorization: Option #1

 Stagger the computations
 PF Distributed over relatively few processors
 May take as long as several DGEMM updates
 DGEMM load imbalance

 Block size trades balance for speed

 Use collective communication primitives
 May require no “holes” in communication fabric



Speed-up Option #2

 Change the data distribution
 Decrease the critical path length
 Consider the communication abilities of machine

 Complements Option #1
 Memory size (small favors #2; large #1)

 Memory hierarchy (higher latency: #1)

 The two options can be used in concert



Communication Routines

 Broadcasts precede DGEMM update
 Needs to be architecturally aware

 Multiple “pipes” connect processors
 Physical to logical mapping
 Careful orchestration is required to

take advantage of machines
considerable abilities

 See: MPI Presentation (MPI_Bcast)



What Else?

 It’s a(n) …
 FPU Test
 Memory Test
 Power Test
 Torus Test
 Mode Test

(Virtual/Co-)



Conclusion: Scaling



Conclusion: Scaling



Conclusion: Scaling

 Contributions to lack of “flat” scaling
 Time spent tuning for a particular

configuration
 Different driver versions evidence different

characteristics
 Runs performed at different stages

 Physical layout of machine
 Aspect ratio



Conclusion

 #73 in TOP500 List (11/2003)
 Limited Machine Access Time

 Made analysis/model more important

 #4 (4096 DD1) & #8 (2048 DD2) on
6/2004 TOP500

 #1 on 11/2004 TOP500
 Also:#8 (4096 DD1) & #15 (2048 DD2)



Conclusion: Breakdown (old data)



What about VNM?



Additional Conclusions

 Models, extrapolated data
 Use models to the extent that the architecture

and algorithm are understood
 Extrapolate from small processor sets
 Vary as many (yes) parameters as possible at the

same time
 Consider how they interact and how they don’t
 Also remember that instruments affect timing

 Often can compensate (incorrect answer results)

 Utilize observed “eccentricities” with caution
(MPI_Reduce)



Current Fronts

 HPC Challenge Benchmark Suite
 STREAMS, HPL, etc.

 HPCS Productivity Benchmarks
 Math Libraries
 Focused Feedback to Toronto
 PERCS Compiler/Persistent Optimization
 Linpack Algorithm on Other Machines



Benchmarks on BG/L:
Parallel and Serial

John A. Gunnels
Mathematical Sciences Dept.

IBM T. J. Watson Research Center


